
Benchmarks on BG/L:
Parallel and Serial

John A. Gunnels
Mathematical Sciences Dept.

IBM T. J. Watson Research Center



Overview

 Single node experience
 Architectural impact
 Algorithms

 Linpack
 Dealing with a bottleneck
 Communication operations



Compute Node: BG/L

 Dual FPU/SIMD
 Alignment issues

 Three-level cache
 Pre-fetching

 Dual Core
 Non-coherent L1 caches

 32 KB, 64-way, Round-Robin
 L2 & L3 caches coherent



Programming Options
High → Low Level

 Compiler optimization to find SIMD parallelism
 User input for specifying memory alignment and lack of aliasing

 alignx assertion
 disjoint pragma

 Dual FPU intrinsics (“built-ins”)
 Complex data type used to model pair of double-precision numbers

that occupy a (P, S) register pair
 Compiler responsible for register allocation and scheduling

 In-line assembly
 User responsible for instruction selection, register allocation, and

scheduling



Memory Bandwidth Utilization for L3-optimal DGEMV kernel

0

1

2

3

4

5

6

7

8

9

10

0 50000 100000 150000 200000 250000 300000 350000 400000

Size (bytes)

m
e

m
. 

b
a

n
d

w
id

th
 (

b
y

te
s

/c
y

c
le

)

L3-optimal kernel
(1st running)

L1-optimal kernel
with intrinsics(1st
running)

L1 and L3-optimal DGEMV Bandwidth
Utilization

5.3 bytes/cycle
(L3 – bandwidth)

Two different kernels are
needed to deal with data
when:

-Data come out of L1

-Data come out of L3



Matrix Multiplication
Tiling for Registers (Analysis)

 Latency tolerance (not bandwidth)
 Take advantage of register count

 Unroll by factor of two
 24 register pairs
 32 cycles per unrolled iteration
 15 cycle load-to-use latency (L2 hit)

 Could go to 3-way unroll if needed
 32 register pairs
 32 cycles per unrolled iteration
 31 cycle load-to-use latency

F2

F1

M1

M2

8

8

16

16



Recursive Data Format

 Mapping 2-D (Matrix) to
1-D (RAM)
 C/Fortran do not map well

 Space-Filling Curve
Approximation
 Recursive Tiling

 Enables
 Streaming/pre-fetching
 Dual core “scaling”

Register
Set

Blocks

L1
Cache
Blocks

L3
Cache
Blocks

Dual Register
Blocks



Dual Core

 Why?
 It’s a effortless way to double your

performance



Dual Core

 Why?
 It exploits the architecture and may

allow one to double the performance of
their code in some cases/regions



Single-Node DGEMM
Performance at 92% of Peak

Single-node DGEMM (444 MHz)

18 July 2003

0

1

2

3

4

0 50 100 150 200 250

Matrix size (N)

P
e

rf
o

rm
a

n
c

e
 (

G
F

lo
p

/s
)

Single core (GF/s)

Dual core (GF/s)

Single core peak (GF/s)

Dual core peak (GF/s)

 Near-perfect scalability (1.99×) going from single-core to
dual-core

 Dual-core code delivers 92.27% of peak flops (8 flop/pclk)
 Performance (as fraction of peak) competitive with that of

Power3 and Power4

92.27
%



Points to consider

 Code fusion can enable one to
 Perform a data re-format and/or make effective

use of both cores for an operation

 The architecture is very rich
 Corner cases have to be handled
 Can be very powerful
 Helpful in understanding performance
 Semi-esoteric improvements exist

 Fine-grained L1 data cache control



What More Could We Want?

 Open up the cache architecture more
 It would be good if the library writer could specify that a

particular access would be a miss in L1, or a hit in L3, for
example

 Expose more microarchitectural constraints to the compiler
 Example: maximum number of L1 cache misses before stall

 Better register scheduling algorithms
 Currently, we have observed excessive spills when using

close to all 32 registers



The Linpack Benchmark



LU Factorization: Brief Review

Already
factored

Pivot and scale
columns

DTRSM

DGEMM

Current block



LINPACK
Problem Mapping

...
16n
repetitions n repetitions

N



Panel Factorization: Option #1

 Stagger the computations
 PF Distributed over relatively few processors
 May take as long as several DGEMM updates
 DGEMM load imbalance

 Block size trades balance for speed

 Use collective communication primitives
 May require no “holes” in communication fabric



Speed-up Option #2

 Change the data distribution
 Decrease the critical path length
 Consider the communication abilities of machine

 Complements Option #1
 Memory size (small favors #2; large #1)

 Memory hierarchy (higher latency: #1)

 The two options can be used in concert



Communication Routines

 Broadcasts precede DGEMM update
 Needs to be architecturally aware

 Multiple “pipes” connect processors
 Physical to logical mapping
 Careful orchestration is required to

take advantage of machines
considerable abilities

 See: MPI Presentation (MPI_Bcast)



What Else?

 It’s a(n) …
 FPU Test
 Memory Test
 Power Test
 Torus Test
 Mode Test

(Virtual/Co-)



Conclusion: Scaling



Conclusion: Scaling



Conclusion: Scaling

 Contributions to lack of “flat” scaling
 Time spent tuning for a particular

configuration
 Different driver versions evidence different

characteristics
 Runs performed at different stages

 Physical layout of machine
 Aspect ratio



Conclusion

 #73 in TOP500 List (11/2003)
 Limited Machine Access Time

 Made analysis/model more important

 #4 (4096 DD1) & #8 (2048 DD2) on
6/2004 TOP500

 #1 on 11/2004 TOP500
 Also:#8 (4096 DD1) & #15 (2048 DD2)



Conclusion: Breakdown (old data)



What about VNM?



Additional Conclusions

 Models, extrapolated data
 Use models to the extent that the architecture

and algorithm are understood
 Extrapolate from small processor sets
 Vary as many (yes) parameters as possible at the

same time
 Consider how they interact and how they don’t
 Also remember that instruments affect timing

 Often can compensate (incorrect answer results)

 Utilize observed “eccentricities” with caution
(MPI_Reduce)



Current Fronts

 HPC Challenge Benchmark Suite
 STREAMS, HPL, etc.

 HPCS Productivity Benchmarks
 Math Libraries
 Focused Feedback to Toronto
 PERCS Compiler/Persistent Optimization
 Linpack Algorithm on Other Machines



Benchmarks on BG/L:
Parallel and Serial

John A. Gunnels
Mathematical Sciences Dept.

IBM T. J. Watson Research Center


